Logo Lumni

Oups, veuillez renseigner une adresse email valide

France Télévisions et l’INA traitent votre adresse e-mail afin de vous adresser respectivement les newsletters Lumni et Lumni Médiateurs FTV, la newsletter Lumni Enseignants INA. Pour exercer vos droits sur vos données personnelles, cliquez sur le lien de désabonnement intégré dans les newsletters ou contactez FTV ou l’INA. Pour en savoir plus, voir les politiques de confidentialité de FTV et de l’INA.

C'est quoi l'identité remarquable ?

Petits Contes mathématiques
Publié le 10/04/12Modifié le 31/01/20
sso_title
sso_description

Cet épisode de la série Petits contes mathématiques présente les identités remarquables.

Sans les identités remarquables, on ne chercherait pas des identités pas remarquées, les chiffres ne se déguiseraient pas en lettres, du particulier on ne ferait pas de général... et bien d'autres choses encore.

Sous le règne d’Henri IV, François Viète fait des mathématiques à ses heures perdues quand il n’a rien d’autre à faire. N’empêche c’est un mathématicien exceptionnel, un peu comme les formules qu’on appelle aujourd’hui les identités remarquables.

Un jour il dit à Henri : « Que sâche sa Majesté que le carré de la différence de deux nombres ajouté à quatre fois leur produit est égal au carré de leur somme ». Henri ne comprit pas alors François reprit : « Que sâche sa Majesté que le double de la somme des carrés de deux nombres diminué du carré de la somme de ces deux nombres est égal au carré de leur différence ». Apercevant une ombre dans le regard d’Henri, le malheureux François se mit en devoir de lui faire comprendre la chose. El voilà, les identités remarquables sont nées.

Il y en a trois : 

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • (a-b)x(a+b) = a² - b²

Avec les lettres, le calcul devient plus simple !

 

Découvrez comment utiliser les identités remarquables pour factoriser.

Réalisateur : Clémence Gandillot; Aurélien Rocland

Producteur : Goldenia Studios; France Télévisions; Universcience

Diffuseur : Curiosphere.tv

Année de copyright : 2012

Année de production : 2012

Voir plus

Retrouve ce contenu dans :