
Descartes
Après les progrès de la Renaissance dans le domaine du calcul intégral, l'Occident va se découvrir un intérêt extraordinaire pour les mathématiques au XVIIe siècle. Un mouvement formidable de découvertes et de créations va se structurer autour de grands mathématiciens de génie. Les mathématiques modernes résultent, dans leurs méthodes et dans leurs notations, en grande partie des avancées de cette époque.
À côté de Huygens, Kepler et Torricelli, cinq grandes figures dominent ce siècle.
René Descartes (1596-1650) s'impose tout d'abord par sa méthode qui prône un raisonnement fondamentalement hypothético-déductif. Ses travaux ensuite ouvrent la voie à la géométrie projective et à la géométrie analytique.
On lui doit également de nombreuses notations d'algèbre encore employées aujourd'hui : x,y,z pour des inconnues, les exposants pour les puissances sous la forme xn ou encore les paramètres a,b,c.
Pierre Simon de Fermat (1601-1665) est un mathématicien français comme Descartes. Il est connu surtout par sa fameuse conjecture qui va passionner 350 années de recherches en mathématiques. Parmi ses nombreuses contributions, citons l'introduction de la démonstration par l'absurde, du calcul de probabilités, des combinatoires, des calculs des dérivés et surtout ses nombreux travaux sur la théorie des nombres.
Blaise Pascal (1623-1662), mathématicien, physicien ou encore philosophe apparaît comme l'un des plus grands génies de l'histoire de France. À 12 ans, il parvenait déjà à démontrer les théorèmes de la géométrie classique. Avant ses 19 ans, il avait rédigé un traité sur les coniques et mis au point une machine à calculer ! Il ouvrira la voie aux calculs infinitésimaux, à l'intégration, aux calculs de probabilités et à l'analyse combinatoire.
Enfin l'Allemand Gottfried Leibniz (1646-1716) et l'Anglais Isaac Newton (1642-1727) vont apporter de façon complémentaire la réponse au grand défi du siècle qu'était le calcul infinitésimal, à travers le calcul différentiel et intégral que Newton appellera la méthode des fluxions.
Nous devons également à Leibniz les notations de type f(x) ainsi que le symbole « ∫ » pour les intégrales.